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A comprehensive aerodynamic analysis program based on linearized

potential theory is described. The solution treats thickness and attitude

problems at subsonic and supersonic speeds. Three dimensional configura-

tions with or without jet flaps having multiple non-planar surfaces of

arbitrary planform and open or closed slender bodies of non-circular

contour may be analyzed. Longitudinal and lateral-directi0nal static

and rotary derivative solutions may be generated.

The analysis has been implemented on a time sharing system in

conjunction with an input tablet digitizer and an interactive graphics

input�output display and editing terminal to maximize its responsiveness

to the preliminary analysis problem. Nominal case computation time of 45

CPU seconds on the CDC 175 for a 200 panel simulation indicates the program

provides an efficient analysis for systematically performing various

aerodynamic configuration tradeoff and evaluation studies.
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INTRODUCTION

Computerization of aerodynamic theory has developedto a point where

the analysis of complete aircraft configurations by a single program is now

possible. Programs designed for this purpose in fact currently exist, but

are limited in scope and abound with subtleties requiring the user to be

highly experienced. Many of the difficulties are attributable to the level

of precision of the underlying theory and the numericalsensitivity of

the associated solution. In preliminary design stages, it is often desirable

to accept some degree of approximation in the interest of modest turn-around

time, reduced computational costs, simplification of input, and stability

and generality of results. The importance of short elapsed time stems from

the necessity to survey systematicallya large number of candidate advanced

configurations or major component geometric parameters for a set of overall

system requirements in a timely manner. Modest computational cost allows a

greater number of configurations and/or conditions tobe economically

investigated.

One approach in this spirit is to replace the co_nonly employed exact

superposition method, which panelsthe entire aircraft surface, with

approximations involving linearized boundary conditions and solutions of a

local two-dimensional potential equation. In the exact theories, a

determination of the singularity strengths required to satisfyboundary

conditions leads to the necessity of inverting very large matrices. The

nature of the approximate ]inearized theories on the other hand substantially

reduces the number of simultaneous equations encountered and consequently

places far less demand upon computer capabilities.

Linearized theory when combined with realistic assessments of

limitations and estimated viscous characteristics provides a valuable tool

for analyzing general aircraft configurations and aerodynamic interactions

at modest attitudes for both subsonic and supersonic speeds.
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LIST OF SYMBOLS

Projected oblique cross section area

Influence coefficient. Nomalwash at control point i due

to vortex panel j of unit strength

Area of quadrilateral panel i

Coefficients in the set of linear equations for the vortex

panel strengths

Reference span

Local chord

Reference chord

Average chord

)

Section drag coefficient

Drag coefficient

Flat plate skin friction drag coefficient

Minimun drag due to lift

Flat plate skin friction drag coefficient

Boundary condition for control Doint i

Section lift coefficient

Roll, pitch and yaw moment coefficients

Lift coefficient

Section normal coefficient

Pressure coefficient (P-P&)/q

Net pressure coefficient (P£-Pu)/q and vortex panel strength

Side force coefficient
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LIST OF SYMBOLS (CONTINUED)

Section momentum coefficient mV/qc

p* T_

_ T_

Drag

Jet reaction force

Force components for body of unit length

Axisymmetric outer solution to potential 'equation

Radius of curvature of cross sectional boundary

Unit vectors in x,y, z direction respectively

Drag due to lift factor or skin friction thickness correction
factor

Equivalent distributed sand gain height

Effective length

Length of segment i, i+l of contour Cn

Equivalent body length or geometric length

Body fineness ratio

Mass rate of flow

Mach number

Moment components for body of unit .length

Unit normal

Rolling, pitching and yawing velocity about x, y and z

Nondimensional angular velocities pb/2U, q_/2U and rb/2U

Pressure

Prandtl number
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S

SREF

T

t/c
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U

V

W
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x,r,e

Z

LIST OF SYMBOLS (CONTINUED)

Free stream dynamic pressure I/2ou 2

Recovery factor

Unit Reynolds number or radius of curvature

Reynolds number based on [ ]

Gas constant

Segment arc length

Body cross sectional area or surface area

Reference area

Static temperature 2R or tangent of quadrilateral panel

leading edge sweep

Airfoil thickness ratio

x,y,z nondimensional components of perturbation velocity

Freestreamvelocity

Jet velocity

Complexpotential function

Body axis coordinate system

Cylindrical coordinate system

Complex number y+iz

Angle of attack

Local angle of attack at surface control point i

Angle of sideslip or
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LIST OF SYMBOLS (CONTINUED)

Vorticity strength per unit length or ratio of specific heats

Horseshoe vortex strength, in Trefftz plane

Controlsurface deflection

Kroneker delta 0 i#j

1 i=j

Jet deflection angle relative to trailing edge

Total jet deflection angle

Body slope

Arc of jet segment

Dihedral angle of quadrilateral panel or boundary layer
momentum thickness

Absolute viscosity

Kinematic viscosity,_/p

Density

Source density

Perturbation velocity potential

Total velocity potential

See figure 3

camber

center ofgravity

upper surface
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LIST OFSYMBOLS (CONTINUED)

lower surface

leading edge

recovery

thickness

transition point

freestream condition

quantity based on effective origin

Eckert reference temperature condition



THEORY

The arbitrary configurations which may be treated by the analysis

are simulated by a distribution of source and'Vortex singularities.

Each of these singularities satisfies the linearized small perturbation

potential equation of motion

The singularity strengths are obtained by satisfying the condition

that the flow is tangent to the local surface:

= 0

All of the resulting velocities and pressures throughout the flow may be

obtained when the singularitystrengths are known. A configuration

is composed of bodies 4 interference shells and aerodynamic surfaces(wings,

canagds_ tails e£c.). The following types of singtllaTitem are used to
represent each.

wing and vertical tail

* chord plane source and vortex pan__//

fuselage and -nacelles _ _"'--/

-surface source line segments- _

-vortex panels -

The first step in the solution procedure consists of obtaining the

strengths of the singularities simulstSng the fuselage and nacelles, from _n

isolated body solution. The present analysis uses slender body theory to
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predict the surface and near field properties. The solution is composed

of a compressible axisymmetric component for a body of revolution of the

same crossectional area and an incompressible crossflow component, @ ,

satisfying the local three dimensional boundary:conditions in the (y,z)

plane. The crossflow is a solution of Laplace's equation

A two-dimensional surface source distribution formulation is used to

obtain this solution. When the body singularity strengths are determined,

the perturbation velocities which they induce on the aerodynamic surfaces,

or other regions of the field, are eyaluated.

The assumptions of thin airfoil theory allow the effects of thickness

and lift on aerodynamic surfaces to be considered independently. Therefore

the effects of the aerodynamic surfaces can be simulated by source _d

vortex singularities accounting for the effects of thickness and lift

respectively. The source and vortex distributions used in this program

are in the form of quadrilateral panels having a constant source or vortex

strength. The vortex panels have. a system of trailing vorticies extending

undeflected to downstream infinity. The use of a chordwise linearly

varying source panel is provided as an option to _liminate singularities
associated with sonic panel edges at supersonic Mach numbers.

The panels are planaz, that is they have no incidence to the free stream

(although dihedral may be included), since thin airfoil theory allows the

transfer of the singularities and boundary conditions to the plane of the

mean chord. These boundary conditions are satisfied at a single control

point on each panel. For thickness,the control point is located at the panel

centroid while the effects of twist, camber, and angle of attack are

satisfied at the spanwise centroid of each vortex panel and at 87.5
percent of its chord.

• -

A cylindrical, non-circular, interference shell, composed entirely of

vortex panels, is used to account for the interference effects of the

aerodynamic surfaces on the fuselage and nacelles. The boundary conditions

on an interference shell are such that the velocity normal to the shell

induced by all singularities, except those <Dr the body which it surrounds,

is zero. The boundary conditions are satisfied at the usual control points
for vortex panels.

The following sections define the details of the solution procedure.

Included are discussions of the isolated body analysis, panel geometry,

boundary conditions, and influence equations, the jet flap solutiDn, and

evaluation of aerodynamic characteristics including drag. References are

cited for the reader interested in further pursuing a particular point.



Body Solution

According to slender body theoryI, 2 the flow disturbance near a

sufficiently regular three dimensional body may be represented by a
perturbation potential of the form

@ - @(z,z;x) • :l(x_ (19

@(=,_) is a solution of the 2-D Laplace equation in the y, z cross flow

plane satisfying the following boundary conditions

v,fl =jv+h_= 0

_--'-_ = 0 on C(x) (2)

C(x) and n, are defined in figure I . A general solution for @ maybe

written as the real part of a complex potential function W(Z) with _ = y + iz.

A useful a/ternative representation of @ and W is obtainable with the aid
of Green's theorem_

where _-(_) is a "source" density for values of _ = Yc + iZc, (Yc,Zc) being
coordinates of a point on the contour c(x).

The function g(x) is obtained by matching @ of equation (I) which is

valid:in the neighborhood of the body with an appropriate "outer" solution.

g(x) is then found to depend explicitly on the Machnumber M and

longitudinal variation of cross sectional areas S(x)

x

-{ 3 ,jg(x) : _' 5'(x:J .l,_,(_._) - T _"¢':)/'" ¢,x-,:) ,t-e ÷ .%-- _"¢,_:) _ (._:-x)at

, , }- -_- _'(o) .%.,.x -T ._'¢.,) A,_.(i-x) M<

x (4)

'{ j }gCx)= -Z_ S'(x)J_(_@)- _S"(t)J_(,x-_)dLt I_I :>1
0

where
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Y

Figure i. Body Slope and Crossectional Variables
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The body axis perturbation velocities are obtained by differentiation
of equation (I)

v --

At supersonic speeds,-zone of influence considerations require that u = v =

w = 0 for x-_r _ o.

Solution of the preceding equations is based on an extension of the

method of reference 4 .

Cross Flow C,omponent.

The reduction of computations to a n_uerical procedure utilizes the

integral representation of @ given in equation (3) by discretization of

the cross sectional boundary into a large number of short linear segments

(figure 2). over each of which the source density _ is as.s.umedconstant at

a value determined by boundary, conditions.

Computation of _'(i,n) over the segment i, i+l proceeds by applTi__g
the boundary condition equation (2) at each segment of Cn. If v@=q=jv+kw

represents the Velocity vector, the corresponding complex velocity in the

cross flow plane is obtained by differentiation of W in equation (3) with
respect to Z:

The contribution by the sources located on segment i,
!

at Pj,n is first evaluated. Noting that i, i+l makes an angle e(i,n)
with respect to the horizontal axis, we have

(s)

i+1 to the velocit_

and the contribution to the integral in equation (5) may be written:

A { v(._,,,_.)L_(._,.,,.)_,= - Z _'(;.,.,,.)_"
,8

w..-_
4,._.

._.
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Figure 2; Crossection Boundary SegmenZing Scheme
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After integration of the last term and stmmmtion over all contributing

segments, the result may be written _

(6)

in which, referring to figure 3 , the quantities R(i,j ,n)

are defined by the relationships

F<(L,d,_)e = Z. -

_ (.,,.;,_.) (i,.i,-,,.),P(.,,j,-,,)

and _ (i,j,n)

To insure uniqueness of the complex velocity, care must be exercised

in assigning values to the angles ?(i,j ,n) and _"(i,j,n). Referring to

figure 3 , these are measured counter-clockwise from the positive y

axis so that when facing from Pin to Pi+l,n , a point P ,nAsJuStpj,nleft of i,i+l shall define an an_le _ (i,j,n) = 8(i,n)_ 3
to the

traverses a path around Pi,n to a point _ust to the right of i,i+l, _(i,j ,n)

increases from 8(i,n) to @(i,n) +211". The same holds true for _'(i,j ,n)
l

as Pj ,n traverses a path around Pi+l,n. In consequence of these definitions

&(i,j,n) becomes-71" when approaching i,i+l from the right and 11"when

approaching from the left. This discontinuity reflects that exhibited by

the stream function upon traversing any closed path which encloses a
distribution of finite sources.

From the boundary condition equation (2), we have

a_
=

After substitution of v and w from equation (6), this last expression
becomes

where

15
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R (i+l,j,n}

_(i ,j ,n)

INFLUE[EDPOINT

R(i,j,n)

P.
i,n

_(i,j,n)

Figure 3. Details of Variables Pertaining to Segment i,i+l
o_ _z_ cn
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The surface normal perturbation velocity = (_@/a-_)_._,may be written in terms

of the body slope [a_/ax)j,_ , the angles of attack _, and sideslip /_
and the angular velocities p,q,r as

a# ag) , !

I

Satisfying equation 7 at each of the points Pj
boundary yields a set of equations for _ (i,n). ,n

on a given contour

.Axisyn_netric Component

Differentiation of gCx) must be carried out with due concern for the

nature of the improper integrals appearing in equation {4). The result is

I

- 4"-'_'{ d'C_.)9_. '(,-M')Z +

-- -- I l' ._'(o). .s'C,)- _"(o>...t,,x..- -_"(:,).£,,.(I-X..._
*.. ¢,-x) J

m'_l

where

I I_I-I

0 .'_.: 0

s'f ,,'.)

I'1>1

= X + X_'_.

15



To compute the second derivatives of the equivalent body cross sectional

area required for g' (x),the first derivatives at x_ are found by finite

differences between xm and Xm+ 1 . Second derivatives S"(x_) at x'_

(x_+1 + x_)/2 are then found by finite differences between S' at x_ and

x_+ I. Finally S"(Xm) is detemined by linear interpolation of S"(_)

between x"m and X"m+l.

Perturbation Velocitie s

The axial velocity u depends on (af/_x) and the axisymnetric solution

g+(x). (o9/_×) is obtained by differentiation of the integral in equation

( 3 ) to first obtain an exact expression which is then approximated by

evaluating the result over the segmented boundary.

The derivation of _#]_x must take into account the fact that the

path of integration in equation (3) is a function of x. Referring to

figure I increments of a dependent variable taken along C(x) are denoted

by 4( ) and increments taken normal to C are denotedby 6(). Differentia-

tion of equation (3) then yields

From figure I

z

_x

where h(_) is the radius of curvature of C(x) at

from figure !

. In addition, we have

16



To evaluate S--K_ we note,

Introducing equations (9), (I0), and ( 11 ) into equation ( 8 ),

(II)

ax -aRe j_ k _×

Again, assuming that quantities in the brackets of the integrands are

constant over i,i+l,

z . (r_)o+ k s, _,_ _c_,_
/.

- _c_,.,-}(TT)_, - gC_,a,.,-_

where

m@ ci,a,_.)
I
m

÷ A(L,_) }

17



The radius of curvature h(i,n) and the derivatives S4-/_ , _ _/gx are
approximated at the mid points of the segments i,i+l as follows

a) $_-/gx - the derivative mt theJ]idd-point x'n of the interval

Xn,Xn+l is set equal to the divided difference between _-(i,n) and _(i,n+l).

Linear interpolation between these derivatives then yields _/_x
at Xn.

b) _/_x - referring to figure 4 , the displacement _7 is

determined by linear interpolation between _ I i,n and _ _ i+l,n.
Z 7//(Xn+l - Xn) then represents g_/gx at x' n. Linear interpolation between

the stations x'n then yields S_/_x at xn .

c) l/h: _ at Pi,n is determined by interpolation between values of

@(i,n) at P'i -- The curvature 1/h at P'i,n is then set equal to the

divided difference between @ at Pi+l,n and @ at Pi,n.

The lateral and vertical perturbation velocities, v and uo , are
obtained from

v-_ - -a_ _'(_) a_
J

Integration over the boundary with constant segment source density yields:

.i

Thus

_' 18
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C n " Cn+l

P.
l+l,n

K (i,n)

Cn Cn+ I

Y

Figure 4. Interpolation Procedure for Determination

of C S_/_ )i'n
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Panel Singularities

The source panels and vortex panels are composed of quadrilaterals

with two edges parallel to the free stream. The coordinates of these panel

corners are specified with respect to an (x,y,z) system having its x axis

in the free stream direction and its z axis in the lift direction. However,

the panel influence equations are written in terms of a coordinate system

having a z axis normal to the panel and an x axis along one of the two

parallel edges. A coordinate transformation is necessary to obtain the

coordinates in the panel reference system. If the plane of the panel is

inclined at an angle __ with respect to the y, z plane, a transformation
P

into the panel coordinate system (_,yp,Zp) is accomplished as follows:

Ip

\

control

point

panel

A transformation of the (Up,Vp,Wp) velocities into the coordinate system of

the panel on which the control point is located (Uc,Vc,Wc) results in the

axial, binormal and normal velocities induced on the panel.

For the image of the influencing panel, the signs of y, 0c and vc are

changed while using the same calculation procedure.

20



Panel Singularit 7 Strengths

The source singularity Strengths may be found directly by equating

each source panel strength to the slope of the thickness distribution at

its control point. For panel i

where Zt refers to the shape of the thickness distribution. The influence

equations for the source panels can then be used to obtain the velocities

induced by the source panels anywhere in the flow.

The determination of the vortex panel singularity strengths are the

final step in the solution procedure. They are obtained by solving a set

of simultaneous equations utilizing the vortex panel influence equations to

relate the singularity strengths to the boundary conditions at the control

points of the vortex panels. The boundary conditions permit the condition

of tangential flow to be satisfied.

Each vortex panel j having singularity strength Cpj induces a set

of velocities ( A _ , A_i, A._ ) on panel i. Therefore a set of influence
equations can be written:

L _ Li ¢'t'_ "" Vo_

I_ = _ A_ __.p,. .i- ('_o.

where (Uoi, Voi, Wo i) refer to the velocities induced by all other body

and source singularities, and written in the coordinate system of the panel

containing the control point. Since the resultant velocity along the normal

at a panel control point must be zero,

21



&

and the following system of equations results

6. D "

This set of linear equations can be solved for the Cp_ and, since it

assumes symmetrical panel loading, can be used to determine the longitudinal

characteristics. A similar set of equations exist for the calculation of

the lateral�directional characteristics. This set assumes an antisy_netrical

panel loading and has a correspondingly different set of influence

coefficients Aij.

Boundary Conditions

Several types of basic and unit boundary conditions are considered

and can be classified as either sy_netric or antisyn_etric. Linearized

theory allows the superposition of these basic unit solutions. The p, q

and r rotary derivative boundary conditions are the result of placing the

configuration at <= 0, _= 0 in a flow field rotating at one radian

per second.

Symmetric:

I) basic (A_/_t_) _ uo%- uJ%

t_)

= surface slope due to twist and camber

= normalwashinducedb y slender

body thickness and cmber

=normalwash induced by source panels

22



2) Unit alpha

3) Unit q rotation

4) Unit flap

Antisymmtric:

1] Unit beta

2) Unit p rotation

3) Unit r rotation

4) Unit flap

_r
- -- Ce_)c - (JB

18o

w s = normalvash induced by slender body

at unit alpha

_to = normalwash induced by slender body
undergoing unit q rotation

18o

_- - 1. for flap panel

_- = O. for others

-

/_e = normalwash induced by slender body

at unit sideslip

z

- -_ ( _" u,2 c_ %- _ (_._,_) _ _,,

_,_ = nomalwash induced by slender body

undergoing unit p rotation

Q

K8

_6 : Normalwash induced by slender body
undergoing unit r rotation

"Tr"
--
18o

_" = i. for flap panel

- O. for others
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Constant Source and Constant Vorticit7 Panel Influence Equations

A constant pressure or constant source panel with a quadrilateral shape

can be constructed by adding or subtracting four semi-infinite triangular
shaped panels . These semi-infinite triangles, each determined by a corner

of the quadrilateral, can be assumed to induce a velocity perturbation every-

where in the flow. However, each corner represents only an integration limit,

and alI four corners must be included to make any sense.

If it is kept in mind that four corners must be included, one of these

triangles having sides determined byy = 0 and x-Ty = 0, induces the

following perturbation velocities:

24
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,8 .

z
R, =

L

I _ >o

I./-1 L

Constant source panel

V(X,_,_jT) = _-_t ' _ _'__T 7

ti¢ x_ -'r(_%w _)

Constant vorticity panel

U_(X,%, _,T) •

V (X,=, _,T) :

60 CX,_,_,T )
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These perturbation velocities hold for both supersonic and subsonic free

stream velocities. In supersonic flow only the real and downstream contributions
are considered.

To establish that these are the correct perturbation velocities the
f_llowing criteria must be met:

le Laplace's equation must be satisfied

or the equivalent,

t_,. , _,Dj,

B The correct discontinuity or Jump in the perturbatian velocity must

occur at the surface of the quadrilateral panel area. For the source

panel the Jump occurs in the normal or w velocity and on the vortex

panel there must be a Jump of constant magnitude in the u perturbation
velocity over the panel area. The perturbation velocities should be

continuous elsewhere, except on the trailing vortex sheet of the
vortex panel.

B. The perturbation velocities must go to zero as upstream infinity is
approached.

For the vortex panel the trailing vorticitymust extend straight back

to downstream infinity. This means that any discontinuity in the v

velocity must be zero outside the spanwise boundaries of the panel and
must be zero upstream of the panel.

26



The first criteria can be established by using the derivatives given in
TABLEI.

The second criteria can be e_:tablished by noting that all terms except

Y_." , a and _."
x _ - "I"C:_.L.,_.L_

are continuous at Z = O. Consider these terms keeping in mind that the
contributions from all four corners must included.

If we let

I = Lx-x,)- T(_-=,) . (x-x,) - T(_-_,)

• /S•&

and use

then the contributions from both corners on the leading edge can be combined
as follows.

27



r<_ - x" + P_( _% _)

TABLE I

DERIVATIVES

u

!
m

I

R.

a ' _÷X X._ I

I
u

R

_-_ _, = ,_*e

a ' , R.+ (Tx +p,:_) Z CTx-,_)
- (x- :_ + C_'o-r '_) _,

28



If we define

-I t _,o

_-, _ t °o...,,o T " +..+,,._o.
-_ -_ _+-_ _- lr

"be + 2. "_o"

the n

_ ,.++..,_" -,_, _ ,._..-,
I'-'_Q L _(._'_)-Ti _ If °..,,<._--.%:>- T ,,'+ "'.._ m._,,.;E

t +t.°-
o

II

?-.lr

o
o

Therefore when a similar procedure is carried out for the trailing edge of

a source panel we obtain the following Jump in the w perturbation velocity.
s

A_ m O
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For the vortex panel (subsonic) we have an additional term. Considering
both additional terms from the leading edge coruers:

_-' (_'m') _ _A_. "I _'_L

Therefore combining the terms

_t'_" _(=-._.)-"r_• _ (.=-_,')-T_'_

(.._-'s, _)(.:S-'_, _ :,o

Z<O

othe_ise

°

D

n
r_

Q••

•Q

3O



The contribution from each panel corner is:

¢-p

81r ;;l:a_..i _r_ :1 t

t. v - m

Therefore s_mming all four panel corners

N

:t
n I

I

I
m_

I

I

I

I

I

I

AV: I
r,c,.

_ • 0 ne'j
"1

Av = Tt.r.T_)C,.

region

of

trailing

vort $c ity

nl

I

I
-- I
"-1
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To verify the third criteria we must show that all of the £unctions
approach zero when all four corners are considered as x -_ -m

T "_ #'( _''" _') '

Therefore considering both corners on the leading edge of the panel

R, "= IXl

R, . (x- x,3 - 0

and therefore this limit is also zero when both corners of the leading or

trailing edges are considered. Since all terms are accounted for, the

perturbation velocities are zero far upstream.
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there is an apparent singularity along the ILne

(_-T_) = o ) i- 0

However this singularity may be removed by combining the contributions from

both corners of the leading or trailing edges of the panel. Along either of
these edges the values of

(_-xL_ - T C_-_) and

are the same for each of the panel corners.

._."" o

... ,.,
..Kt_

°o
.°

,.'" ._0

.<,_.• ;.-,
cx. _'_,_ .." "_ _*

"":::'°>l"".
.'" I "._,.

°" _ _o_

••""'" I " ."Q,.
• " I ". _,.j

_0

" I

It can be seen from the above diagram that (rx ,@_) will have the same sign
on a point (x,y,o) which lles outside the s_anwise boundaries of the

quadrilateral. Therefore outside the spanwise boundaries the term

[ 0,- ",':_)'-,. c',';,_')," ]

can be canceled by combining both corners, and the resulting term

+ , _ ,_, z [','cx-x,)-,/,.'c.-._,_]

will not be singular if the correct + or - sign is chosen.

boundary an actual singularity occurs on the panel edge.
Within the spanw_se
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The term ½log a÷____x
can be written a-x

also has a possible singularity. This term

' log g÷X , (g_x)_-- ------ = -- log .

For the source panel the singularity maybe removed for points along
which are outside of the panel boundaires.

If (x-x,) and ( x -x 3) have the same sign the combination of the two terms
gives

-K R,'- (_-_,) - "K" r_z.Cx-x,_ - "E
R_ *.(_-_)

where the correct sign is chosen to remove the singularity. On the panel

edge the singularity is real and cannot be remoyed.

I

I I

o

11 I elI _15

e I I i_,

For a vo_texpanel the terms (subsonic)

removable singularity

real singularity

Both have real singularities for _ _o (downstream) and removable s_ngularities

for x<o (upstream). The real singularities occur on the panel edges and on

the edge of the trailing vortex sheet.
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Supersonic Velocities - Special Considerations

The velocity perturbation influence equations for supersonic flows are

treated by taking only the real parts of the expressions. This means that

= _'-_'c_%_,) is set equal to zero for points which lie outside the

downstream each cone from any given corner. Therefore R and ½ log a,_
a-_ are

zero for points which lie outside the downstream Mach cone. For (T'-_,_ > o
there #re no problems using this method.

If _ _-#S_)_ @ the real part of

I

is _._"

therefore combining two corners

!

FZ = 5_M_-'

[TC_-X,)-_'C_-_,)][T(_-X,)-,,_'(=-=,>]%_:T5R,a_

If m = 0 and either R, or Rz is zero and we allow the other to approach zero
the value of 9"2 becomes

_T
i

[ ",'(,,-x,) - ,_'c:_-:_,_][ ",-(y,-x,) -,_'( :_-,_,_3 w. to

FZ ..--

0
[rcx-x,)-_'C_-_,)][T(x-x_)-A'(_._,)]> o

Therefore if R, and Rz are zero but we are inside the envelope of mach cones

_rom the leading edge (see figure 5) the value of F2 is set equal to

FZ -
Ir

if

i •

IT C.-x,)- _'(_-_,)] [T(x- x,)-,_'(_-_,',,]

R_ <o a_ <o

(x-r_) _ > (_'-r L) p.,"
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As T--_ (sonic leading edge) the value of (T_-_*) --O. In
this case

F2 =

T [ c,-_,_-","_-_,_]
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Linearly Varying Source Panel Influence 5_,uations

In supersonic flow constant source panels having a sonic edge have a

real singularity along an extension of this edge. The singularity occurs
because:

(x-x.)--T(_-_,)

o

(R, -[T(x-x,_-_(_-_,)]
t _w_

L_

_2f.Af

-_i) "0

Control points which are near the extension of this edge will have large

u and v velocities induced upon them. The singularity can be eliminated by

using panels which have a source distribution which varies linearly in the

chordwise direction. The resulting continuous source distribution eliminates

the Singularities. The linearly varying source panel influence equations can

be found by integrating the constant source panel influence equations with

respect to x.

u)'°=- z-_
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These velocity components satisfy the same criteria as the velocity components

for the constant source panels except that the source strength is proportional to

x-Ty. The source panel finite elements are constructed with the following
properties.

I. All panel leading and trailing edges are at constant (_), side edges

are at constant y.

2. Hach source finite element is composed of a pair of chordwise adjacent
panels.

. The source strength varies linearly with chord measured from the

leading edge of a panel pair, i.e. the maximum value of the source

strength is proportional to the local chord and attains this maximum

on the panel edge joining the panel pair.

x x

%,. x

The perturbation velocities induced by this panel pair are composed of
Contributions from six corners.
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If there are N panels in the chordwise direction there will be N-I
singularities or unknown source strengths associated with them. The

linear variation in the source distribution means the value of dz/dx

must be zero at the leading and trailing edges of each span station.

This may be an undesired restriction and therefore the use of linearly

varying source panels is optional.
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Numerical Solution

Householder's method for solving simultaneous equations is used in the

solution of the aerodynamic influence equations. The influence matrix is

triangularized by means of orthogonal transformation matrices, which

preserve the conditioning of the matrix. This along with a reduction in the

number of required computer operations greatly improves the numerical

accuracy and stability of the solution over that of the standard Gaussian
reduction method.

A complete derivation of the method is given in reference (6). The

method has been altered 7 from the original to allow the operation on a

single row of the matrix at a time. This reduces the required core allocation

necessary to triangularize the matrix.

If [A] is the square influence matrix, the upper triangle is given by

JR] -- [W] [A]

where [W] is the combined orthogonal transformation matrix used by House-
holder to triangularize [A].

In the Householder method [W] is equal to the product of N individual

orthogonal transformation matrices, where N equals the number of unknowns.

Each transformation results in reducing all elements below the diagonal to

zero for one column. The columns are reduced from left to right.

The individual transformation matrices [W]m are defined by

- 21uml{ lT)

where [I] is a _mit dia_onal matrix and {urn} is a column matrix defined by

the unit vector _m = (am "_-mV'_/_m-The vector _m is defined by the ruth

coltmm of [A] where the elements on rows less than m are replaced by zeros.

The unit vector _m is defined by a col_mmmatrix {Vm] with all zeros

except for the mth row, which is equal to one. The constants em and hn
are defined as

am" I {am} I

_m = _/2_m(C_m.- %'_m)
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It can be shown thatlamlis reduced to I{am}_ (vm} if (am} is premulti-
plied by ( [I] 2 {urn}°(urn}T). Also, that the first m-i rows of

[Win-I] [Win-2] ... [WI] [A]

remain unchanged by the ruth transformation. The result after m transforma-

tions is then zeros below the diagonal for the first m columns and

[{a}iI , [{a}2[ .... , I{a}m-2I , ]{a}m-iI , [{a}m] on the diagonal. The

elements above the diagonal have been defined by the m preceding

transformations and will remain unchanged for the N_m remaining
transformations.

The relation

([I] - 2(Um}{Um}T) (am} _ It_}IIVml (12)

where _n = Cam" =m _/_m or {_l = ({aml -=mlVmD/_m

and

_m-- V_m(_m- Vm'_m)

=m = lfamll

or _m = V2=mC=m- f'aml'Tlvml)

remain to be proved.

the vector identity

It is helpful in the derivation of equation (12) if

I_1_+ 2C%._ nm =
(13)

is observed from the following vector diagram.

42,



Then from equation (13)

%+2 (%. _) -- am

Therefore

+2 "am=a m

where lml m and _m_m are dyadics.
of _m.

The unit vector Im is in the direction

Equation (14) can then be written in._matrix notation as follows

C[I] - 2 [uml[um_T)lam}= ll_mIl_{v'm}

which is equal to equation (12). In matrix or tensor notation it becomes

evident that the dimensions of {am} , {Vm} , and {um} are not limited to
three.

and

_m " z I,.,_lTlam)

Then if equation (12) is premultiplied by {am}T

{amlTlaml " 21_lTlumll_lTlaml : Ilamlllam}T[vm I (is)
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And substituting em and _m into equation [IS)

or

1
a2m " _7/_2m = am {am}T{vm}

/_m = V/2am(am " {am}T{vm})
(16)

In vector notation equation 616) is seen to be equal to

_m = _2am(am " _m "_Im)

Also, if equation (16) is substituted back into equation [12)

{am}- _/2am(a m - {am}TIvm}) {u m} = am{Vm}

Therefore _

{am}- am{Vm}

I

_'/2am(a m - {am}T{vm})

or in vector notation

..L

U --
m

_,- am%

42amfa m - Wm'_m)
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Jet Flap

A completely linearized approach was used based on the assumptions of

thin airfoil theory. The flow was assumed to be inviscid and irrotational

and all entrainment effects were neglected. The jet was represented by an

infinitesimally thin sheet having zero mass flow but finite momentum per

unit of span. This sheet was assumed to extend from the trailing edge of

the surface back to infinity. (In practice one or two chord lengths is

sufficient). The effects of transverse momentum and the deflection of the

jet sheet were neglected.

Since both the planform and jet can maintain a pressure discontinuity,

they are both represented by a system of quadrilateral panels having

continuous distributions of vorticity. The strengths of these constant

pressure vortex panels are determined by solving a set of linear

simultaneous equations which satisfy the downwash boundary conditions at

a set of control points on the planform and jet.

The boundary condition on the planform is the previously described

flow tangency condition. The pressure difference across the jet causes a

change in the direction of the jet momentum. The equation relating these

quantities forms the boundary condition on the jet and can be derived by

considering a jet segment of unit depth.

',,
R/

," P 'i',,

'Z; 2,

t
P+_P

The mass rate of flow through the jet is m and the velocity is %/. If we

assume a pressure difference of AP across the jet, then from the momentum
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theorem applied to the differential element, we write

or
._V Z_p -"- axPR ,',,_

_,p= _V
R

where R is the radius of curvature of the jet.

The reaction of the jet on the flow external to the jet is

F =,--P R_,_

A vortex of strength per unit length along the jet of _ would produce a
reaction of

F =_oU.&'R_p

Hence, equating these two forces, we calculate the action of the jet on

the flow external to the jet by replacing the jet with a running vortex
strength <I'given by

For a nearly horizontal jet with a large radius of curvature

l dZZ _

where w is local downwash velocity (nondimensionalized with respect to _.

Then

"2"c%,,., u.. pu..= _-
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or
C_ (Y)C(Y) a_Lr (X,Y) CpN_'r (X,Y,) "-'0

which is the boundary condition written for a three dimensional jet flap.

To apply the jet flap boundary condition to control point i, the above

equation is integrated between adajacent control points in the streamwise

direction.

Xc_ 2_KXc_
C_(Y) C(Y) )_ (X_Y) aX --

X c,i._l ¢./,-I

CP. T(x,-,') ax -o (17),

The control point is located at 87.5 percent of each panel chord.

To simplify the second integral in equation _17) the assumption is made

that the control point is exactly at the panel tra_ling edge. The effects

of such an assumption have been shown to be negligible. Equation (17)

evaluated from the leading to the trailing edge of panel i yields the

following relation:

The downwash at each control point is written in terms of the N net

pressures on the quadrilateral panels:

N

I

N

is then writtenEquation (18)

N

=0

where _ is the Kroneker delta.
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For a flap panel adjacent to the jet exit, equation (18) must include

any jet deflection angle relative to the surface trailing edge.

or

where

Then

_ is the jet deflection angle.

N

T_, c_c [[;_-_,_-, _3-_ ,,x_.]_-_
_.-i_

--c_c%

The complete set of linear simultaneous equations for both the surface

and the jet flap is then written

N

= C;. i.--1, N (.19)

where

for i on the surface

[_'_i-_'_-'.i] - 8_ ,,x_ for i on the jet

and C£ =
-_i for i on the surface
c_c_for i on the jet adjacent to the exit

o for i elsewhere on the jet

Both symmetric and antisymmetric jet deflections are considered. Thus

after calculating the influence matrices and boundary conditions in the

usual manner, the appropriate rows are modified and combined to produce a linear

syn_etric or antisyBmetric system as described by equation (19). Because

of the rotational quality Of the flow fields, the p, q and r rotary

derivative calculations are generally not valid for jet flap configurations.
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AERODYNAMICCHARACTERISTICS

Longitudinal and lateral-directional forces and moments due to thick-

ness, twist and camber, pitch, sideslip, and the dimensionless rotary

velocities _, _, $ are obtained from surface pressure integrations of the

various configuration components.

Bodies

The pressure coefficient, to an approximation consistant with slender

body theory, is

- r b/z ._%-/z_":_)_ _¥ ,
(zo)

The forces and moments are obtained from the surface integrations

%J Cp --f-i a s

Fy . lo= - dx C,.p dT.

!

q. Lz

!

:_lo%d X-XCQ) dx Cp dy

,I

%1-3 - (x-xc_)d× cf az
"0

'Y Cpd,f
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In terms of these expressions, the conmonly used aerodynamic coefficients
are

F_ J

FX. Lz

Fz. L z

My L3

%L3 _ S_EF

C_ - M----K'* L3

%L3 b S_E_

where L is the body length and £, & and Sre f are configuration reference

chord, span and area respectively.

5O



°

Crosscoupling between the pitch, sideslip,

the product and quadratic terms in equation (20)

and rotary motions through

is neglected.

Planar Components

Surface pressure distributions are calculated for planar components

using the first-orderlinearized form of the pressure coefficient.

Cp 2_, [_ ._ Cp.ET]

The +/- signs refer to the upper and lower surfaces respectively. The term

_-[_o consists of the velocities induced by the isolated bodies and

other vortex and source panels. These velocities are obtained by multiply-

ing the _ influence matrices by the appropriate panel strengthsJ The

cr_ term accounts for the _ perturbation velocity induced by the

local distribution of vorticity and changes sign from upper to lower

surface. The total _ and c_T values are the result of taking linear
combinations of all the basic and unit solutions.

The net pressures for each of the basic and unit solutions are integrated

numerically to give the section forces and moments, component forces and

moments and configuration forces and moments.

Since the vortex panels have a constant pressure distribution, a block

integration scheme is employed. With the exception of drag, these basic

and unit force and moment coefficients are combined in a linear manner to

produce the aerodynamic characteristics for any desired flight condition.

Since drag varies in a parabolic manner, it must be considered on a point

by point basis as defined in a later section.

The longitudinal normal force distribution on the bodies in calculated

for each solution. The load distribution on the interference shell portion

of the body is given by integrating over all vortex panels at a given
longitudinal station.

normal force

N

Cn ,_= c, Z CP"zTJ.i- L. Az cos ez
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where w is the number of panels around the shell, L is the length of the

body, &X is the length of the interference shell segment, A_is the panel

area and C1 = 2 for a centerline body or C1 = 1 for an off centerline body.

This carryover load distribution is added to the previously calculated
isolated body longit1_tinal load distribution.

The section characteristics of planar components are determined by a

chordwise summation of panel data at each span station and are given by

the following equations:

local lift coefficient

N

I _-_ C pN_Ti AiC.- ¢As /_.,,

normal force

N

Cn c-'f$_-- ,,_c---"_,,G c%_-rs. A[
_.=l

lift force

N

C9- h-'__Ave= msc_v¢_ cPNa-q Ai Cos el

center of pressure

N

,c _$C_vc_ . . P,',_-_'_.'_'L (x_.-x_._)
/,= I

where N is the number of chordwise panels, and Z_s is the width of the span

station and is given by

z_s ='_my z + _Z_z
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The section characteristics due to the reaction of a jet flap are

calculated by taking the appropriate component of the reaction force.

reaction normal force

C

C_V_- C_ CAVG

where _ris the total deflection angle of the jet.

reaction lift force

C C

Component forces and moments (excluding jet reaction loads) are given

by the following equations:

lift

C L

N

= F, Z C'PNeT£ _ COS e-

side force

N

Cy = -- SREFFZZ cPNeT'_A_. SiN _£
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rolling moment

N

_-=l

+s,,,,e,:(zl-zc_iJ

pitching moment

N

-._%_ V'
c_,_ _ s_E_/_,cp__T__,_cose,:(x_-Xc_)

yawing moment

Cry-

N

b 5Re_

_.:1

where N is the total number of vortex panels on the component, and F1 and

F2 are defined as follows:

syn_etric loading F1 = 1 asymuetric geometry

= 2 sy_netric geometry

F2 : 1 asynmetric geometry

: 0 s)mmetric geometry

antis)nmuetric loading F1 : 1 asymmetric geometry

= 0 symuetric geometry

F2 : 1 asynmetric geometry

= 2 symmetric geometry
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The X coordinate of the center of pressure is given by

Xc.p " Cm'£
C L XCG

For interference shell components, the total forces and moments of the

corresponding isolated body are added to those of the shell.

Jet reaction forces and moments are obtained from a spanwise sun,nation
of the jet flap section characteristics:

lift

F I

CLoET = S--_R_F_(c,, c)L a,,_ _.s_ cos a_

side force

N

-FZ Z

_.=1

rolling moment

N

q a_'r"E_'R_FZ_, L eL
4.=|

* S_NeZ (Zz -Zce)- ]

pitching moment

CmjET -

N

:5 T'

55



yawing moment

CnjE T

N
F2.

where N is the number of spanwise jet flap stations and FI and F2 are
defined as before.

The forces and moments for the complete configuration are obtained

by summing those of the individual components.
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DRAGANALYSIS

Preliminary estimation of configuration aerodynamic efficiency requires
the calculation of aerodynamic drag. The program separates the computation

into two parts which are assumed to be independent of each other: viscous

skin friction drag and pressure drag. The_latter calculation results in a

set of drag polars representing the attainment of zero or one hundred

percent of the leading edge suction available. The complete estimation, of

the pressure drag requires an assessment of the percent of leading edge

suction which can be attained. Although the loss of "suction" is due to

viscous effects, it is assumed the suction level will be estimated semi-

empirically and therefore is not part of the viscous calculation. Trim drag

polars may be calculated to assess the tradeoff between longitudinal
stability and performance.

The calculation procedure ass_nes the viscous skin friction drag and

supersonic pressure drag due to thickness are independent of lift. The use

of a linearized analysis results in a quadratic drag polar for the

drag due to lift. Therefore the trimmed or untrin_ned drag polar for
zero suction or one hundred percent suction is of the form

a

Co -- Co + Co '" C,, "* K(.C,.-C,. )
_'_S_.% tN_t_ MItS IMIN

where K depends on the type of polar. The specific techniques used to

accomplish the drag analysis are discussed below.

Skin Friction

Several well established semiempirical techniques for the evaluation

of adiabatic laminar and turbulent flat plate skin friction at incompressible

and compressible speeds are used to estimate the viscous drag of advanced

aircraft using a component buildup approach. A specified transition point

calculation option is provided for in conjunction with a matching of the

momentum thickness to link the two boundary layer states. For the

turbulent condition, the increase in drag due to distributed surface

roughness is treatedusing unformly distributed sand g_ain results.

Component thickness effects are approximated using experimental data

correlations for two-dimensional airfoil sections and bodies of revolution.

Considerations such as separation, component interference, and discrete

protuberances (e.g. antennas, drains, aft facing steps, etc.) must be

accounted for separately if present.
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In the following, a discussion is presented for a single component
evaluation in order to simplify writing of the equations and eliminate

multiple subscripting. The total result is obtained by a surface area

weighted summation of the various component analyses as described on
page 63.

Laminar/Transition

A specified transition option is provided in the program. The principal

function of the calculation is to provide the conditions required to

initialize the turbulent solution. In particular,the transition point

length and momentum thickness Reynolds numbers are required.

where

X ': R. '_1'_,_,,_ L
"r_N L

C =
,,,A_ _ -I-_

T_

T_

'To. " :.I * _ H,. . I * o.8sl _,w

-B
= Z. ZTO x Io

T _Wa

r+ J_e.& Ib sec/ft 2

This solution is based on the laminar Blasius result [8, chapter VII)

in conjunction with Eckert's compressibility transformation _. This

option permits an assessment of the reduction in skin friction drag if

laminar flow can be maintained for the specified extent. It does not

establish the liklihood that such a condition will be realized in practice
or to what extent.
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Turbulent

Smooth and distributed rough surface options have been provided in the

analysis. In either case, the solution is initialized by matching the

moment_n thickness at the transition point produced by the laminar�transition

solution. That is, an effective origin [co_nonly referred to as a virtual

origin) is established for the turbulent analysis.

For the hydraulically smooth case

= z
C_. R.A,_ I_ ,,,

R - Cv R_/CF CV from equation (21)
_ for known C,_,_

_X

•M. C F

(21).

2e
CF T I( -,,l_ _ ,

L i -E " c,"C
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For the distributed rough case

AX ,, ×
i Ta_

_P

- 2._"

Al_ _l i_li..,. -I

R

1.4.1
Z R /C,

O i_lll *"

z_X : rt /_;.,.i Alt.
141.i

.1, L-X * AX

I

C_ s_ y., .-,
(,.8,+ ,.<.__,;--_-<) (,+,.._ Pl_,. )

i

c, - MA_[ c, , c, ]

The turbulent flat plate method used here is that of Schlicting

(B, chapter XXI) which is based on a transposition of Nikuradse's densely

packed sand grain roughened pipe data. The effect of compressibility is

due to the reduction in density at the wall as proposed by Goddard! I

The selection of the equivalent sand_rain roughness for a given manufac-

turing surface finish is made with the aid of Table II which was taken from
Clutter! 2
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TABLE II

Type of Surface

Aerodynamically smooth

Polished metal or wood

Natural sheet metal

Smooth matte paint, carefully applied

Standard camouflage paint, average application

Camouflage paint, mass-production spray

Dip-galvanized metal surface

Natural surface of cast iron

Equivalent Sand Roughness

Ks (inches)

0

0.02 - 0.08 x I0 -5

0.16 x I0-3

0.25 x I0 "3

0.40 x 10 -3

1.20 x 10 -3

6 x 10 -3

10 x 10 -3

Thickness Corrections

The foregoing evaluations produce as estimate of the shearing forces

on a flat plate (at zero angle of attack) for a variety of conditions. As

an actual aircraft has a non vanishing thickness, an estimate of pressure

gradient effects on skin friction and boundary layer displacement pressure

drag losses is required. A conmon procedure for accomplishing this and the

one which will be used here is based on non-lifting experimental correlations

for s)nmetric two-dimensional airfoils and.axisynmetric bodies. The

following relations derived by Homer (1 3, chapter VI) are used respectively.

K - = I ", _, -_- * &o
Re,

(_Dr
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Homer recon_aends K,-- 2 for airfoils with maximum thickness at 30%

chord and KI= 1.2 for NACA 64 and 65 series airfoils. In this regard, the

best information available to an analyst for his particular contour should

be used. This is especially true for modern high performance shapes such

as the supercritical airfoil, etc.

Total Viscous Dra_

The aircraft total viscous drag coefficient is estimated by a sum of

the preceding analysis over all components (i.e. wing, fuselage, vertical

tail, etc.). That is

M

Z s< lCo : K.
vI_oU& .,%

The component length used in the calculation of the skinfriction

coefficient is the mean chord for planar component segments and the physical

length for bodies and rmcelles. "

Zero Sucti6nDrag

The zero suction drag due to lift is calculated by numerically

integrating the net pressure distribution times the projected area in the

streamwise direction over each of the planer surfaces. The following

block integration scheme is used to sum over all quadrilateral panels.

Co • F, cp. o,.:
b

where

and

,,q ,, _..o;. .+. ,+,. + _ <_ ,_ .8"t_ _.

_oL is due to twist and camber, _ is the control surface deflection

and _= 1 for control surface panels and _= 0 for non control surface

panels. F1 = 2 for syn_etric geometries and F1 = I for asy_netric

geometries. For configurations having jet flaps, an additionaldrag term
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must be included to account for the loss in thrust due to the downward

deflection of the jet. This drag increment can be seen from the following
thrust diagram.

-r_l_usT = c_c

THRUST = C..c. cos _T

The section thrust loss can be expressed by the equation

where _r is the total deflection angle at the section of interest. The

total increment can be found by a spanwise stmmmtion of the section thrust
loss:

Potential Form Drag

One hundred percent suction drag due to lift and supersonic wave drag
due to thickness can be evaluated by integration of the momentum flux

through a large circular cylinder centered on the x axis and whose radius

approaches infinity.

K

_ wave drag moment%m flux

/ "- I
>._;_. -_.:_..... _ ._2_.-o"L

J '__..:.." ...._ I ",-," _ ....
" _-.'....._ : ','-! _ _razizng__" -"_...._ .'.',",'-. / I \

_" ':'.-':_-.. / I \ vorticies
I \

machcone' _ \ _- / _,,,x,

Trefftz plane
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The resulting expression for the total pressure drag is as follows:

The first term represents the wave drag due to mcmentt_u losses thru

the side of the cylinder caused by standing pressure waves. The second

term represents the vortex drag which arises from the kinetic energy left

behind in the Trefftz plane by the system of trailing vorticies. Included

in the vortex drag is the loss in the axial component of thrust due to a

deflected jet flap. The calculation of these terms is discussed below.

,Vortex Dra_

The vortex drag may be computed when the distribution of trailing

vorticity in the Trefftz plane is known. The assumptions of linearized thin

wing theory result in a vortex sheet which extends directly downstream of

all lifting surfaces. By changing a surface integral for kinetic energy to

a line integral over the vortex sheet in the Trefftz plane the following

integral for drag results

b/Z

I
- bWL

where in addition

_L.

2

'I
- _JL

&sz

- b_'a

and where is the sectional _ mlcA,_

is the sectional c_ci¢_

is the local normal velocity on the vortex sheet in the

Trefftz plane

is the local inclination of the sheet with respect to the

y axis
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The program computes the normal velocity on the vortex sheet, _0_._

by assuming the vortex sheet is composed of finite trailing horseshoe

vorticies whose strength is propQrtional to the local section C.(s). The

normal velocity is computed at a control point located midway between the

trailing vortex segments.

(_"

control point i

.Q

r" "
_..(_)"

Each vortex j induces a contribution to the normal velocity at

section i.

Therefore Co = _ _0. _ _. _ , "-- __, _.
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Wave Drag

The integral for wave drag

C_ _,_p = -2

may be simplified by allowing the cylindrical surface of integration to

recede infinitely far frcm the disturbance. Under. these conditions

it is possible to reduce spatial singularity simulations to a series of one-

dimensional distributions. The basis for this reduction is the finding by

Hayes (14) that the potential and the gradients of interest induced by a

singularity along an arbitrary trace on a distant control surface, say PP'

of figure 6 (or alternately described by the cylindrical angle @), is

invariant to a finite translation along the surface of a hyperboloid

emanating from the trace and passing through the singularity. As the apex

of the hyperboloid is a great distance away, the aforementioned movement is

along a surface which is essentially plane; it will be henceforth referred

to as an "oblique plane". Since a singularity is a solution of a linear

differential equation, all singular solutions which lie on the surface of the

same hyperboloid (oblique plane) may thus be grouped to form a single equi-

valent point singularity whose strength is equal to the algebraic sum of the

individual strengths and which induces the same potential (momentum) along

the trace as the group of individual singularities.

This finding provides the basic technique for reducing a general spatial

distribution of singularities to a series of equivalent lineal distributions.

This is accomplished by surveying the three-dimensional distribution longi-

tudinally at a series of fixed cylindrical angles, e , At each angle, the

survey produces an equivalent lineal distribution by systematically cutting

the spatial distribution at a series of longitudinal stations along its

length. At each cut, the group of intercepted singularities is collapsed

along the "oblique plane" to form one of the equivalent point singularities

comprising the lineal distribution .
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The far field expression.for the wave drag of a general system
of liftj and side force elements is

where

,Co,,, S_,, = u-" k_(_,,e) k,

0 "_ .@a,

(¢,,0) .,t,v,.l¢-cal _e,a%;e

K_ (¢,e) =

÷C_, e) =

±U :_tC%e) =
_ .

I

is the equivalent lineal singularity strength at the

cylindrical angle 8

equivalent source strength per unit length

equivalent lifting element strength per unit length

equivalent side force strength per unit length

These strengths are deduced from the three dimensional singularity
distributions by application of the superposition principle along

equipotential surfaces. For a distant observer such surfaces are planar in

the vicinity of the singularity configuration. The individual singularity

strengths are related to the object under consideration by the requirement

of flow tangency at the solid boundary. Lomax (15) derived the following

approximate expressions between the equivalent singularity strengths and a
slender lifting object.

a(

(¢,Ob : '

I

where (see figure 7 )

A (_,_)

C

---_A(¢,_)

c,a_
r..

is the Y-Z projection of the obliquely cut
crossectional area

is the contour around the surface in the oblique cut
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Utilizing the singularity strength expressions derived by Lomax, the

following expression for wave resistance based on the far field theory of
Hayes is obtained

an- L(e) ,(e)

0 o 0

I

A(_,,e)- _. # ' s ! .j}
c

{_" "]t
g" _ ,t

In order to facilitate subsequent discussion, the above result is

manipulated into the following form

C. S
w _f_

_-W 1 I

Q 0 0

,q¢((.,_) k le,-/,l,_e,,_¢.ao (23)

where

A requirement for this transformation is that

!

FI,, (o,e) • FI.'(L,0) . o
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In accordance with equation 23.., the wave drag of a configuration is

the average of the wave drag of a series of equivalent bodies of revoluation.

The drag of each of these bodies is calculated from a knowledge of its

longitudinal distribution of normal cross sectional area. For each

equivalent body, these areas are defined to be the frontal projection of the

areas and the accumulation of pressure force in the theta direction

intercepted on the original configuration by a system of parallel oblique

planes each incilned at the glven Mach angle. 1_ne common trace angle (¢)

of the system identifies the equivalent body under consideration.

Nacelles are assumed to swallow air supersonically. That is, the duct

is operating at a mass flow ratio of unity. Consistent with this assumption,

the equivalent body cross sectional area distribution is increased by the

oblique projected duct capture area at all stations ahead of the duct

which are intercepted by an oblique plane.

Blunt base components are extended (maintaining constant cross

sectional area) sufficiently far downstream to prevent flow closure around

the base.

In addition to a geometric description, a definition of the pressure

distribution acting on the configuration is required. The vortex panel

analysis is used for this purpose. The thickness pressures for planar

components have tacitly been neglected under the assunption that the surfaces

are sufficiently thin that the net pressure coefficient is representative of

pressure acting on the oblique section.

Estimation of the wave drag based on equation 23 depends on solution

of integrals of the type

! !

jf--/--' _, (x,)Gi Cx,) JL_.l _,-x:12.x _xT.
Z'n" ' '

0 @

of a numerically given function GO(). Evaluation of such forms has been

studied by Eminton 16,17 for functions having G'(X) continuous on the

interval (0,I) and G'(0) = G'[I) = 0. In such situations G'(X) can be

expanded in a Fourier sine series. It can then be shown that

I
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where

0

Eminton then solved for the value of the Fourier coefficients which result

in I being a minimum, subject to the condition that the resulting series

for G6X) be exact for an arbitrarily specified set of points o,I, _i, i = I,_.

This approach produces the following result

where

•-al _=i L,,,[

&

Tr

;.
E. • -- I _ ,: _ "_.

" "VL'I" I

• '= }- IE, {

• II &

P:i " - "_(*'_'z.i) _

The solution of equation 23 for wave drag is accomplished by use of the

following identities.

¢, _;., 0 ) - fl e (.¢;, e)

Z_e)
C%(0) =:

L'(_)
t'n" IlT/_.

0 - I/till
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Trim Drag

The control surface deflection required to longitudinally balance the

configuration at a given angle of attack is calculated from the pitching
moment equation:

C_ =C_÷ _c, _ + _c.____[,,,_ = o (24)

or

_r

The associated lift coefficient is given by

C,.. = C,. * ".c,. _. + _ L,,...,
(25)

The trim drag is evaluated using the preceding drag analysis with the

control surface deflection angle determined from equation 24.

The lift and pitching moment characteristics appearing in equations

(2_ and (2_ are based on the constant pressure vortex panel simulation

described previously. Since this analysis is potential, dynamic pressure

losses associated with viscous wake effects have been neglected.
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CONCLUSIONS

An aerodynamic configuration evaluation program has been developed and

implemented on a time sharing system with an interactive graphics terminal

to maximize responsiveness to the preliminary analysis problem

The solution is based on linearized potential theory and treats thick-

ness and attitude problems at subsonic and supersonic speeds. Three

dimensional configurations having multiple non-planar surfaces of arbitrary

planform and open or closed slender bodies of non-circular contour may be

analyzed. Longitudinal and lateral-directional static and rotary derivatives

solutions may be generated.

Nominal case computation time of 45 CPU seconds on the CDC 175 for

a 200 panel simulation indicates the program provides an efficient analysis

for systematically performing various aerodynamic configuration tradeoff
and evaluation studies.
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